尤川豪   ·  7月前
390 貼文  ·  246 留言

How machine learning powers Facebook’s News Feed ranking algorithm

https://engineering.fb.com/2021/01/26/ml-applications/news-feed-ranking/

How do you pick the overarching value for an ecosystem the size of Facebook? We want to provide the people using our services with long-term value. How much does seeing this friend’s running video or reading an interesting article create value for Juan? We think the best way to assess whether something is creating long-term value for someone is to pick metrics that are aligned with what people say is important to them. So we survey people about how meaningful they found an interaction with their friends or whether a post is worth their time to make sure our values (Yijtk) reflect what people say they find meaningful.

什麼是有價值?

用以下方法找出

https://about.fb.com/news/2019/05/more-personalized-experiences/

https://about.fb.com/news/2018/07/how-users-help-shape-facebook/

線上問券、focus group、1對1訪問...etc

完全把價值這件事給量化、方法論化

難怪 FB 越來越難用

不過,體積變得這麼巨大,是很難找到什麼好方法

  分享   共 308 次點閱
共有 1 則留言
尤川豪   ·  7月前
390 貼文  ·  246 留言

我的意思是 這跟手機電信公司 用自動語音打給你 請你按數字 1-5 給客服體驗評分 差不了多少

 
您的留言
尤川豪
390 貼文  ·  246 留言

Devs.tw 是讓工程師寫筆記、網誌的平台。隨手紀錄、寫作,方便日後搜尋!

歡迎您一起加入寫作與分享的行列!

查看所有文章